Contents – Basic Electrical and Electronics Engineering

Contents

Preface

About the Author

1. Basic Concepts, Laws, and Principles

1.1  Introduction

1.2  Atomic Structure and Electric Charge

1.3  Conductors, Insulators, and Semiconductors

1.4  Electric Field and Magnetic Field

1.5  Electric Current, Resistance, Potential, and Potential Difference

1.5.1  Electric Current

1.5.2  Resistance

1.5.3  Potential and Potential Difference

1.6  Ohm’s Law

1.7  The Effect of Temperature on Resistance

1.8  Work, Power, and Energy

1.8.1  Work

1.8.2  Power

1.8.3  Energy

1.8.4  Units of Work, Power, and Energy

1.9  Electromagnetism and Electromagnetic Induction

1.9.1  Introduction

1.9.2  Magnetic Field Around a Current-carrying Conductor

1.9.3  Magnetic Field Around a Coil

1.9.4  A Current-carrying Conductor Placed in a Magnetic Field

1.9.5  A Current-carrying Coil Placed in a Magnetic Field

1.10  Laws of Electromagnetic Induction

1.11  Induced EMF in a Coil Rotating in a Magnetic Field

1.12  EMF Induced in a Conductor

1.13  Dynamically Induced EMF and Statically Induced EMF

1.14  Self-induced EMF and Mutually Induced EMF

1.15  Self-inductance of a Coil

1.16  Mutual Inductance

1.17  Inductance of Coils Connected in Series Having a Common Core

1.18  Energy Stored in a Magnetic Field

1.19  Electrical Circuit Elements

1.19.1  Resistors

1.19.2  Inductors

1.19.3  Capacitors

1.20  Energy Stored in a Capacitor

1.21  Capacitor in Parallel and in Series

1.22  Review Questions

2. DC Networks and Network Theorems

2.1  Introduction

2.2  DC Network Terminologies, Voltage, and Current Sources

2.2.1  Network Terminologies

2.2.2  Voltage and Current Sources

2.2.3  Source Transformation

2.3 Series–Parallel Circuits

2.3.1  Series Circuits

2.3.2  Parallel Circuits

2.3.3  Series–Parallel Circuits

2.4  Voltage and Current Divider Rules

2.4.1  Voltage Divider Rule

2.4.2  Current Divider Rule

2.5 Kirchhoff’s Laws

2.5.1  Kirchhoff’s Current Law

2.5.2  Kirchhoff’s Voltage Law

2.5.3  Solution of Simultaneous Equations using Cramer’s Rule

2.5.4  Method of Evaluating Determinant

2.6  Maxwell’s Mesh Current Method

2.7  Nodal Voltage Method (Nodal Analysis)

2.8  Network Theorems

2.8.1  Superposition Theorem

2.8.2  Thevenin’s Theorem

2.8.3  Norton’s Theorem

2.8.4  Millman’s Theorem

2.8.5  Maximum Power Transfer Theorem

2.9  Star–Delta Transformation

2.9.1  Transforming Relations for Delta to Star

2.9.2  Transforming Relations for Star to Delta

2.10  DC Transients

2.10.1  Introduction

2.10.2  Transient in R–L Circuit

2.10.3  Transient in R–C Circuit

2.11  Review Questions

3. AC Fundamentals and Single-phase Circuits

3.1  AC Fundamentals

3.1.1  Introduction

3.1.2  Generation of Alternating Voltage in an Elementary Generator

3.1.3  Concept of Frequency, Cycle, Time Period, Instantaneous Value, Average Value, and Maximum Value

3.1.4  Sinusoidal and Non-sinusoidal Wave Forms

3.1.5  Concept of Average Value and Root Mean Square (RMS) Value of an Alternating Quantity

3.1.6  Analytical Method of Calculation of RMS Value, Average Value, and Form Factor

3.1.7  RMS and Average Values of Half-wave-rectified Alternating Quantity

3.1.8  Concept of Phase and Phase Difference

3.2  Single-phase AC Circuits

3.2.1  Behaviour of R, L, and C in AC Circuits

3.2.2  L–R Series Circuit

3.2.3  Apparent Power, Real Power, and Reactive Power

3.2.4  Power in an AC Circuit

3.2.5  R–C Series Circuit

3.2.6  R–L–C Series Circuit

3.2.7  AC Parallel Circuits

3.2.8  AC Series—Parallel Circuits

3.3  Resonance in AC Circuits

3.3.1  Resonance in AC Series Circuit

3.3.2  Resonance in AC Parallel Circuits

3.4  Review Questions

4. Three-phase System

4.1  Introduction

4.2  Advantages of Three-phase Systems

4.3  Generation of Three-phase Voltages

4.4  Terms used in Three-phase Systems and Circuits

4.5  Three-phase Winding Connections

4.5.1  Star Connection

4.5.2  Delta Connection

4.5.3  Relationship of Line and Phase Voltages, and Currents in a Star-connected System

4.5.4  Relationship of Line and Phase Voltages and Currents in a Delta-connected System

4.6  Active and Reactive Power

4.7  Comparison between Star Connection and Delta Connection

4.8  Measurement of Power in Three-phase Circuits

4.8.1  One-Wattmeter Method

4.8.2  Two-Wattmeter Method

4.8.3  Three-Wattmeter Method

4.9  Review Questions

5. Transformers

5.1  Introduction

5.2  Applications of Transformers

5.3  Basic Principle and Constructional Details

5.3.1  Basic Principle

5.3.2  Constructional Details

5.4  Core-type and Shell-type Transformers

5.4.1  Power Transformers and Distribution Transformers

5.5  EMF Equation

5.6  Transformer on No-load

5.7  Transformer on Load

5.8  Transformer Circuit Parameters and Equivalent Circuit

5.9  Phasor Diagram of a Transformer

5.10  Concept of Voltage Regulation

5.11  Concept of an Ideal Transformer

5.12  Transformer Tests

5.12.1  Open-circuit Test or No-load Test

5.12.2  Short-circuit Test

5.13  Efficiency of a Transformer

5.14  Condition for Maximum Efficiency

5.15  All-day Efficiency

5.16  Calculation of Regulation of a Transformer

5.17  Factors Affecting Losses in a Transformer

5.18  Solved Numerical Problems

5.19  Review Questions

6. DC Machines

6.1  Introduction and Principle of Working

6.1.1  Nature of Load Current When Output is Taken out Through Brush and Slip-ring Arrangement

6.1.2  Nature of Load Current When Output is Taken Through Brush and Commutator Arrangement

6.1.3  Function of Brush and Commutators in Motoring Action

6.2  Constructional Details

6.2.1  The Field System

6.2.2  The Armature

6.2.3  Armature Winding

6.2.4  Types of Armature Winding

6.3  EMF Equation of a DC Machine

6.3.1  Induced EMF is Equated to Flux Cut Per Second

6.4  Types of DC Machines

6.5  Characteristics of DC Generators

6.5.1  No-load Characteristics

6.5.2  Load Characteristics

6.6  Applications of DC Generators

6.7  Operation of a DC Machine as a Motor

6.7.1  Working Principle of a DC Motor

6.7.2  Changing the Direction of Rotation

6.7.3  Energy Conversion Equation

6.8  Torque Equation

6.9  Starting a DC Motor

6.10  Speed Control of DC Motors

6.10.1  Voltage Control Method

6.10.2  Field Control Method

6.10.3  Armature Control Method

6.11  Starter for a DC Motor

6.11.1  Three-point Starter

6.11.2  Four-point Starter

6.12  Types and Characteristics of DC Motors

6.12.1  Characteristics of DC Shunt Motors

6.12.2  Characteristics of DC Series Motors

6.12.3  Characteristics of DC Compound Motors

6.13  Losses and Efficiency

6.13.1  Losses in a DC Machine

6.13.2  Efficiency of DC Machine

6.13.3  Condition for Maximum Efficiency

6.14  Applications of DC Machines

6.14.1  DC Generators

6.14.2  DC Motors

6.14.3  DC Series Motors

6.14.4  DC Compound Motors

6.15  Solved Numerical Problems

6.16  Review Questions

7. Three-phase Induction Motors

7.1  Introduction

7.2  Constructional Details

7.3  Windings and Pole Formation

7.4  Production of Rotating Magnetic Field

7.5  Principle of Working

7.6  Rotor-induced EMF, Rotor Frequency, Rotor Current

7.7  Losses in Induction Motors

7.8  Power Flow Diagram

7.9  Torque Equation

7.10  Starting Torque

7.11  Condition for Maximum Torque

7.12  Torque–Slip Characteristic

7.13  Variation of Torque–Slip Characteristic with Change in Rotor–Circuit Resistance

7.14  Starting of Induction Motors

7.14.1  Direct-on-Line Starting

7.14.2  Manual Star–Delta Starter

7.15  Speed Control of Induction Motors

7.16  Determination of Efficiency

7.16.1  No-load Test

7.16.2  Blocked-rotor Test

7.17  Applications of Induction Motors

7.18  Solved Numerical Problems

7.19  Review Questions

8. Single-phase Motors

8.1  Introduction to Single-phase Induction Motors

8.2  Constructional Details

8.3 Double Revolving Field Theory and Principle of Working of Single-phase Induction Motors

8.4  Torque-speed Characteristic

8.5  Split-phase Induction Motors

8.6  Shaded Pole Induction Motor

8.7  Single-phase AC Series Motors

8.8  Operation of a Series Motor on DC and AC (Universal Motors)

8.9  Single-phase Synchronous Motors

8.9.1  Reluctance Motors

8.9.2  Hysteresis Motors

8.10  Stepper Motors

8.11  Review Questions

9. Synchronous Machines

9.1  Introduction

9.2  Constructional Details of Synchronous Machines

9.3  Advantages of Stationary Armature and Rotating Field

9.4  Use of Laminated Sheets for the Stator and the Rotor

9.5  Armature Windings

9.6  Concept of Coil Span, Mechanical, and Electrical Degrees

9.7  Types of Windings

9.8  Induced EMF in a Synchronous Machine

9.8.1  EMF Equation

9.8.2  Distribution Factor

9.8.3  Pitch Factor

9.9  Open-circuit or No-load Characteristic

9.10  Synchronous Generator on Load

9.11  Synchronous Impedance and Voltage Drop due to Synchronous Impedance

9.12  Voltage Regulation of a Synchronous Generator

9.13  Determination of Voltage Regulation by the Synchronous Impedance Method

9.14  Synchronous Generators Connected in Parallel to Supply a Common Load

9.14.1  Advantages of Parallel Operation

9.14.2  Parallel Connection of Alternators

9.14.3  Conditions for Parallel Connection and Synchronization

9.14.4  Load Sharing

9.15  Synchronous Motor

9.15.1  Introduction

9.15.2  Principle of Working of a Synchronous Motor

9.15.3  Effect of Change of Excitation of a Synchronous Motor

9.15.4  Application of Synchronous Motors

9.16  Review Questions

10. Measurement and Measuring Instruments

10.1  Introduction

10.2  Analog and Digital Instruments

10.3  Passive and Active Instruments

10.4  Static Characteristics of Instruments

10.4.1  Accuracy

10.4.2  Precision

10.4.3  Sensitivity and Resolution

10.4.4  Error, Threshold, and Loading Effect

10.5  Linear and Non-linear Systems

10.6  Dynamic Characteristics of Instruments

10.7  Classification of the Instrument System

10.7.1  Active and Passive Instruments

10.7.2  Analog and Digital Instruments

10.7.3  Indicating, Recording, and Integrating Instruments

10.7.4  Deflection- and Null-type Instruments

10.8  Measurement Error

10.9  Indicating-type Instruments

10.9.1  Permanent Magnet Moving Coil Instruments

10.9.2  Use of Shunts and Multipliers

10.9.3  Moving Iron Instruments

10.9.4  Dynamometer-type moving coil Instruments

10.10  Measurement of Power

10.10.1  Power in DC and AC Circuits

10.10.2  Measurement of Power in Single-phase AC Circuit

10.10.3  Sources of Error in measurement using Dynamometer-type Wattmeters

10.11  Measurement of Energy

10.11.1  Introduction

10.11.2  Constructional details and working principle of Single-phase Induction-type Energy Meter

10.12  Instrument Transformers

10.12.1  Current Transformers

10.12.2  Potential Transformers

10.13  Megger and Measurement of Insulation Resistance

10.14  Multimeter and Measurement of Resistance

10.15  Review Questions

11. Domestic Wiring

11.1  Domestic Wiring

11.1.1  Service Connection

11.1.2  Service Mains

11.1.3  Distribution Board for Single-phase Installation

11.1.4  Neutral and Earth Wire

11.1.5  Earthing

11.1.6  System of Wiring

11.1.7  System of Connection of Lights, Fans and Other Electrical Loads

11.2  Circuit Protective Devices and Safety Precautions

11.2.1  Safety Precautions in Using Electricity

11.3  Efficient Use of Electricity

11.4  Review Questions

12. Semiconductor Devices

12.1  Introduction

12.2  Review of Atomic Theory

12.3  Binding Forces between Atoms in Semiconductor Materials

12.4  Extrinsic Semiconductors

12.4.1  N-type Semiconductor Material

12.4.2  P-type Semiconductor Material

12.4.3  The p–n Junction

12.4.4  Biasing of p–n Junction

12.5  Semiconductor Diodes

12.5.1  Volt–ampere Characteristic of a Diode

12.5.2  An Ideal Diode

12.5.3  Diode Parameters and Diode Ratings

12.6  Zener Diode

12.6.1  Zener Diode as Voltage Regulator

12.6.2  Zener Diode as a Reference Voltage

12.7  Bipolar Junction Transistors

12.7.1  Working of a n–p–n Transistor

12.7.2  Working of a p–n–p Transistor

12.7.3  Transistor Configurations

12.7.4  Transistor as an Amplifier

12.7.5  Transistor as a Switch

12.8  Field Effect Transistors

12.8.1  Junction Field Effect Transistors

12.8.2  FET Applications

12.9  MOSFET

12.9.1  The Enhancement MOSFET (EMOSFET)

12.9.2  The Depletion MOSFET

12.9.3  Static Characteristics of MOSFET

12.9.4  Applications of MOSFET

12.10  UJT (Unijunction Transistor)

12.10.1  Working of UJT

12.11  Silicon-controlled Rectifier

12.11.1  Characteristics of SCR

12.11.2  Two-transistor Analogy of an SCR

12.11.3  Applications of SCR

12.12  DIAC

12.13  TRIAC

12.14  Optoelectronic Devices

12.14.1  Light-dependent Resistor

12.14.2  Light-emitting Diodes

12.14.3  Seven Segment Displays

12.14.4  Liquid Crystal Displays

12.14.5  Photodiodes

12.14.6  Photovoltaic Cells or Solar Cells

12.14.7  Phototransistors

12.14.8  Photo-darlington

12.14.9  Optocouplers

12.15  Review Questions

13. Electronic Circuits

13.1  Rectifiers

13.1.1  Introduction

13.1.2  Half-wave Rectifier

13.1.3  Analysis of Half-wave Rectifier

13.1.4  Full-wave Rectifier

13.1.5  Full-wave Bridge Rectifier

13.1.6  Analysis of Full-wave Rectifiers

13.1.7  Comparison of Half-wave and Full-wave Rectifiers

13.2  Transistor Amplifier

13.2.1  The Common Emitter Amplifier Circuit

13.2.2  Common Collector Amplifier Circuit

13.2.3  Common Base Amplifier Circuit

13.3  Oscillators

13.3.1  Classification of Oscillators

13.3.2  Sinusoidal Oscillator or Harmonic Oscillator

13.3.3  Non-sinusoidal Oscillator

13.3.4  Basic Functional Blocks of Oscillator Circuit

13.3.5  Barkhausen Criterion or Conditions for Oscillation

13.3.6  LC Tuned Oscillators

13.3.7  RC Oscillators

13.4  Filters

13.5  RC Integrator and Differentiator

13.5.1  Integrator

13.5.2  Differentiator

13.6  Applications of Diodes in Clipping and Clamping Circuits

13.6.1  Negative and Positive Series Clippers

13.6.2  Shunt Clippers

13.6.3  Biased Clippers

13.6.4  Clamping Circuits

13.7  Multivibrators

13.7.1  Astable Multivibrator

13.7.2  Monostable Multivibrator

13.7.3  Bistable Multivibrator

13.8  Schmitt Trigger

13.9  Review Questions

Index