References – Energy Balance Climate Models


  1. Abramowitz, M. and Stegun, I.A. (1964) Handbook of Mathematical Functions, US Department of Commerce, 1046p, cbm/aands/intro.htm (accessed 7 March 2017).
  2. Ames, W.F. (1992) Numerical Methods for Partial Differential Equations, 3rd edn, Academic Press, New York, 451p.
  3. Andrews, D.G., Holton, J.R., and Leovy, C.B. (1987) Middle Atmosphere Dynamics, Academic Press, San Diego, CA, 489p.
  4. Andronova, N.G. and Schlesinger, M.E. (2001) J. Geophys. Res., 106, 22605.
  5. Angell, J.K. and Korshover, J. (1983) Global temperature variations in the troposphere and stratosphere, 1958-1982. Mon. Weather Rev., 111, 901–921.
  6. Archer, D.A. and Pierrehumbert, R.T. (eds) (2010) The Warming Papers, Wiley/Blackwell, 432p.
  7. Arfken, G.B. and Weber, H.J. (2005) Mathematical Methods for Physicists, 6th edn, Elsevier Publishing, San Diego, CA, 1182p.
  8. Baum, S.K. and Crowley, T.J. (1991) Seasonal snowline instability in a climate model with realistic geography: application to carboniferous (300 Ma) glaciation. Geophys. Res. Lett., 18, 1719–1722.
  9. Bender, M.L. (2013) Paleoclimate, Princeton University Press, Princeton, NJ, 306p.
  10. Berger, A. (1978a) Long-term variations of daily insolation and Quaternary climatic changes. J. Atmos. Sci., 35, 2362–2367.
  11. Berger, A. (1978b) A simple algorithm to compute long term variations of daily or monthly insolation, Contribution No. 18, Universite Catholique de Louvain, Institut d'Astronomie et de Geophysique, G. Lemaitre, Louvain-la-Neuve, B-1348 Belgique.
  12. Berger, A.L. and Loutre, M.F. (1992) Astronomical solutions for paleoclimate studies over the last 3 million years. Earth Planet. Sci. Lett., 111, 369–382, doi: 10.1016/0012-821X(92)90190-7.
  13. Berger, A., Ercegovac, M., and Mesinger, F. (Eds) (2005) Paleoclimate & the Earth Climate System. Serb. Acad. of Sci. & Arts, Vol CX, Book 4. 190.
  14. Berner, R.A. (2004) The Phanerozoic Carbon Cycle: and , Oxford University Press, Oxford, 158p.
  15. Bond, T.C. et al. (2013) Bounding the role of black carbon in the climate system: a scientific assessment. J. Geophys. Res., 118, (11), 5380–5552, doi: 10.1002/jgrd.50171.
  16. Bowman, K.P. and Huang, J. (1991) A multi-grid solver for the Helmholtz equation on a semi-regular grid on the sphere. Mon. Weather Rev., 119, 769–775.
  17. Bradley, R.S. (2015) Paleoclimatology, Reconstructing Climates of the Quaternary, Academic Press, Amsterdam, 675p.
  18. Briggs, W.L., Henson, V.E., and McCormick, S.F. (2000) A Multigrid Tutorial, SIAM, Philadelphia, PA, 193p.
  19. Budyko, M.I. (1968) On the origin of glacial epochs. Meteorol. Gidrol., 2, 3–8.
  20. Budyko, M.I. (1969) The effect of solar radiation variations on the climate of the earth. Tellus, 21, 611–619.
  21. Budyko, M.I. (1972) The future climate. Eos Trans. AGU, 53, 868–870.
  22. Budyko, M.I. (1977) On present-day climatic changes. Tellus, 29, 193–204.
  23. Bulmer, M.G. (1979) Principles of Statistics, Dover Publications, New York, 252p, (accessed 7 March 2017).
  24. Byron, F.W. and Fuller, R.W. (1992) Mathematics of Classical and Quantum Physics, Dover Publications. 672p.
  25. Cahalan, R.F. and North, G.R. (1979) A stability theorem for energy-balance climate models. J. Atmos. Sci., 36, 1205–1216.
  26. Callen, H.B. (1985) Thermodynamics and an Introduction to Thermostatistics, 2nd edn, John Wiley & Sons, Inc., New York, 493p.
  27. Cess, R.D. et al. (1990) Intercomparison and interpretation of climate feedback processes in 19 atmospheric general circulation models. J. Geophys. Res., 95, 16601–16615.
  28. Chandrasekhar, S. (1960) Radiative Transfer, Dover Publications, New York, 393p.
  29. Chýlek, P. and Coakley, J.A. (1975) Analytical analysis of a Budyko-type climate model. J. Atmos. Sci., 32, 675–679.
  30. Coakley, J.A. and Yang, P. (2014) Atmospheric Radiation – A Primer with Illustrative Solutions, Wiley-VCH Verlag GmbH, Weinheim, 239p.
  31. Coddington, O., Lean, J., Pilewskie, P., Snow, M., and Lindholm, D. (2016) A solar irradiance climate data record. Bull. Am. Meteorol. Soc., 97, 1265–1282.
  32. Conrath, B.J., Hanel, R.A., Kunde, V.G., and Prabhakara, C. (1970) The infrared interferometer experiment on Nimbus 3. J. Geophys. Res., 75, 5831–5857.
  33. Cover, T.M. and Thomas, J.A. (1991) Elements of Information Theory, John Wiley & Sons, Inc., New York, 542p.
  34. Coxall, H.K., Wilson, P.A., Palike, H., Lear, C.H., and Backman, J. (2005) Rapid stepwise onset of Antarctic glaciation and deeper calcite compensation in the Pacific Ocean. Nature, 433, 53–57.
  35. Cramér, H. (1999) Mathematical Methods of Statistics, Princeton University Press, Princeton, NJ, 575p.
  36. Cramér, H. and Leadbetter, M.R. (1995) Stationary and Related Stochastic Processes, Dover, Mineola, NY, 348p.
  37. Crowley, T.J. and Baum, S.K. (1993) Effect of decreased solar luminosity on late Precambrian ice extent. J. Geophys. Res., 98, 16723–16732.
  38. Crowley, T.J. and Hyde, W.T. (2008) Transient nature of late Pleistocene climate variability. Nature, 456, 226–230, doi: 10.1038/nature07365.
  39. Crowley, T.J. and Kim, K.Y. (1994) Milankovitch forcing of the last interglacial sea sevel. Sciene, 265, 1566–1568.
  40. Crowley, T.J. and North, G.R. (1988) Abrupt climate change and extinction events in earth history. Science, 240, 996–1002.
  41. Crowley, T.J. and North, G.R. (1990) Modeling the onset of glaciation. Ann. Glaciol., 14, 39–42.
  42. Crowley, T.J., Short, D.A., Mengel, J.G., and North, G.R. (1986) Role of seasonality in the evolution of climate during the last 100 million years. Science, 231, 579–584.
  43. Crowley, T.J., Yip, K.-J., and Baum, S.K. (1994) Snowline instability in a general circulation model: application to Carboniferous glaciation. Clim. Dyn., 10, 363–376.
  44. DeBlonde, G. and Peltier, W.R. (1991) A One-Dimensional Model of Continental Ice Volume Fluctuations through the Pleistocene: Implications for the Origin of the Mid-Pleistocene Climate Transition, doi: 10.1175/1520-0442.
  45. Deblonde, G., Peltier, W.R., and Hyde, W.T. (1992) Simulations of continental ice sheet growth over the last glacial-interglacial cycle: experiments with a one level seasonal energy balance model including seasonal ice albedo feedback. Palaeogeogr. Palaeoclimatol. Palaeoecol., 98, 37–55.
  46. DeConto, R.M. and Pollard, D. (2003) Rapid Cenozoic glaciation of Antarctica induced by declining atmospheric . Nature, 21, 245–249.
  47. Donner, L., Schubert, W., and Somerville, R. (eds) (2011) The Development of Atmospheric General Circulation Models, Cambridge University Press, Cambridge, 255p.
  48. Donohoe, A., Armour, D.C., Pendergrass, A.G., and Battisti, D.S. (2015) Shortwave and longwave radiative contributions to global warming under increasing CO2. Proc. Nat. Acad. Sci., 16700–16705, doi: 10.1073/pnas.1412190111.
  49. Drazin, P.G. (1992) Nonlinear Systems, Cambridge University Press, Cambridge, 308p.
  50. Drazin, P.G. and Griffel, D.H. (1977) On the branching structure of diffusive climatological models. J. Atmos. Sci., 35, 1858–1867.
  51. Eddy, J.A. (1976) The Maunder Minimum. Science, New Series, 192, 1189–1202.
  52. Emiliani, C. (1958) Palaeotemperature analysis of core 280 and Pleistocene correlations. J. Geol., 66, 264–275.
  53. Erdelyi, E. (ed.) (1953) Higher Transcendental Functions, vol. 1, McGraw-Hill, New York, 303p.
  54. Evans, D.A.D. (2000) Stratigraphic, geochronological, & paleomagnetic constraints upon the neo-proterozoic climatic paradox. Am. J. Sci., 300, 347–433.
  55. Feulner, G. (2012) The faint young sun problem. Rev. Geophys., 50, doi: 8755-1209/12/2011RG000375.
  56. Fletcher, C.A.J. (1991) Computational Techniques for Fluid Dynamics, vol. I, 2nd edn, Springer-Verlag, Berlin, 401p.
  57. Frank, T.D., Birgenheier, L.P., Montanez, I.P., Fielding, C.R., and Rygel, M.C. (2008) Late Paleozoic climate dynamics revealed by comparison of ice-proximal stratigraphic and ice-distal isotopic records. Geol. Soc. Am. Spec. Pap., 441, 331–342.
  58. Gal-Chen, T. and Schneider, S.H. (1976) Energy balance climate modeling: comparison of radiative and dynamic feedback mechanisms. Tellus, 28, 108–121.
  59. Gardiner, C.W. (1985) Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences, 2nd edn, Springer-Verlag, Berlin, 442p.
  60. Gardner, W.A. (1989) Introduction to Random Processes, 2nd edn, McGraw-Hill, New York, p. 546.
  61. Gasquet, C. and Witomski, P. (Translated by R. Ryan) (1991) Fourier Analysis and Applications, Springer, New York, 442p.
  62. Ghil, M. (1976) Climate stability for a Sellers-type model. J. Atmos. Sci., 33, 3–20.
  63. Golitsyn, G. and Mokhov, I. (1978) Stability and extremal properties of climate models. Izv. Acad. Sci. USSR Atmos. Oceanic Phys. Engl. Transl., 14, 271–277.
  64. Goody, R.M. and Yung, Y.L. (1989) Atmospheric Radiation – Theoritical Basis, 2nd edn, Oxford University Press, New York, 517p.
  65. Gough, D.O. (1981) Solar interior structure and luminosity variations. Sol. Phys., 74, 21–34.
  66. Graves, C.E., Lee, W.-H., and North, G.R. (1993) New parameterizations and sensitivities for simple climate models. J. Geophys. Res., 98, 5025–5036.
  67. Gray, L.J., Beer, J., Geller, M., Haigh, J.D., Lockwood, M., Matthes, K., Cubasch, U., Fleitmann, D., Harrison, G., Hood, L., Luterbacher, J., Meehl, G.A., Shindell, D., van Geel, B., and White, W. (2010) Solar influence on climate. Rev. Geophys., 48, 1–53, doi: 10.1029/2009 RG000282.
  68. Gregory, J. (2000) Vertical heat transports in the ocean and their effect on time-dependent climate change. Clim. Dynam., 16, 501. doi: 10.1007/s003820000059.
  69. Hackbusch, W. (1980) Multi-Grid Methods and Applications, Springer-Verlag, Berlin, 377p.
  70. Haigh, J.D. (2010) Solar variability and the stratosphere, in The Stratosphere: Dynamics, Transport, and Chemistry (eds L.M. Polvani, A.H. Sobel, and D.W. Waugh), American Geophysical Union, Washington, DC, pp. 173–187, ISBN: 9780875904795.
  71. Haigh, J.D. and Cargill, P. (2015) The Sun's Influence on Climate, Princeton University Press, Princeton, NJ, 207p.
  72. Hannan, E.J. (1970) Multiple Time Series, John Wiley & Sons, Inc., New York, 536p.
  73. Hansen, J., Lacis, A., Rind, D., Russell, G., Stone, P., Fung, I., Ruedy, R., and Lerner, J. (1984) Climate sensitivity: analysis of feedback mechanisms, in Climate Processes and Climate Sensitivity (eds. J.E. Hansen and T. Takahashi), AGU Geophysical Monograph 29, Maurice Ewing Vol. 5. American Geophysical Union, pp. 130–163.
  74. Hansen, J. and Lebedeff, S. (1987) Global trends of measured surface air temperature. J. Geophys. Res., 92, 13345–13372.
  75. Hart, M.H. (1978) Evolution of atmosphere of earth. Icarus, 37, 23–39.
  76. Hart, M.H. (1979) Habitable zones about main sequence stars. Icarus, 33, 351–357.
  77. Hartmann, D.L. (1994) Global Physical Climatology, 1st edn, Academic Press, San Diego, CA, 411p.
  78. Hartmann, D.L. (2016) Global Physical Climatology, 2nd edn, Academic Press, San Diego, CA, 411p.
  79. Harvey, L.D.D. and Schneider, S.H. (1985) Transient climate response to external forcing on 100–104 year time scales part 1: Experiments with globally averaged, coupled, atmosphere and ocean energy balance models. J. Geophys. Res., 90, doi: 10.1029/JD090iD01p02191. ISSN: 0148–0227.
  80. Hasselmann, K. (1976) Stochastic climate models, Part I. Theory. Tellus, 6, 473–484.
  81. Hasselmann, K. (1979) On the signal-to-noise problem in atmospheric response studies, in Meteorology Over the Tropical Oceans (ed. D.B. Shaw), Royal Meteorological Society, pp. 251–259.
  82. Hasselmann, K. (1993) Optimal fingerprints for the detection of time-dependent climate change. J. Clim., 6, 1957–1971.
  83. Hasselmann, K. (1997) Multi-pattern fingerprint method for detection and attribution of climate change. Clim. Dyn., 13, 601–611.
  84. Hayes, J.D., Imbrie, J., and Shackleton, N.J. (1976) Variations in the earth's orbit: pacemaker of the ice ages. Science, 194, 1121–1132.
  85. Hegerl, G.C. and North, G.R. (1997) Comparison of statistically optimal approaches to detecting climate change. J. Clim., 10, 1125–1133.
  86. Held, I.M. (2005) The gap between simulation and understanding in climate modeling. Bull. Am. Meteorol. Soc., 86 (11), 1609–1614.
  87. Held, I.M. and Soden, B.J. (2000) Water vapor feedback and global warming. Annu. Rev. Energy Env., 25, 441–475.
  88. Held, I.M. and Soden, B.J. (2006) Robust responses of the hydrological cycle to global warming. J. Clim., 19, 5686–5699.
  89. Held, I.M. and Suarez, M. (1974) Simple albedo feedback models of the icecaps. Tellus, 36, 613–629.
  90. Held, I.M., Winton, M., Takahashi, K., Delworth, T., Zeng, F., and Vallis, G.K. (2010) Probing the fast and slow components of global warming by returning zbruptly to preindustrial forcing. J. Clim., 23, 2418–2427, doi: 10.1175/2009JCLI3466.1.
  91. Hoffert, M., Callegari, A.J., and Ching-Tzong Hsie (1980) The role of deep sea heat storage in the secular response to climatic forcing. J. Geophs. Res., 85, 6667–6679.
  92. Hoffert, M.I. and Flannery, B.P. (1985) Model projections of the time-dependent response to increasing carbon dioxide, in Projecting the Climatic Effects of Increasing Carbon Dioxide, Report ER-0237 (eds M.C. MacCracken and F.M. Luther), US Department of Energy, Washington, DC, pp. 150–190.
  93. Hoffman, P.F. and Schrag, D.P. (2002) The snowball earth hypothesis: testing the limits of global change. Terra Nova, 14, 129–155.
  94. Horn, R.A. and Johnson, C.R. (1985) Matrix Analysis, Cambridge University Press, 561p.
  95. Houghton, J.T. (1986) The Physics of Atmospheres, 2nd edn, Cambridge University Press, Cambridge, 271p.
  96. Huang, R.X. (2009) Ocean Circulation: Wind-Driven and Thermohaline Processes. Cambridge University Press, Cambridge, UK, 806p.
  97. Huang, J. and Bowman, K.P. (1992) The small ice cap instability in seasonal energy balance models. Clim. Dyn., 7, 205–215.
  98. Huang, Y. and Shahabadi, M.B. (2014) Why logarithmic? A note on the dependence of radiative forcing on gas concentration. J. Geophys. Res. Atmos., 119, 13683–13689, doi: 10.1002/2014JD022466.
  99. Huybers, P. and Wunsch, C. (1994) Obliquity pacing of the late Pleistocene glacial terminations. Nature, 434, 491–494. doi: 10.1038/nature03401.
  100. Hyde, W.T., Crowley, T.J., Baum, S.K., and Peltier, W.R. (2000) Neoproterozoic ‘snowball earth’ simulations with a coupled climate/ice-sheet model. Nature, 405, 425–429.
  101. Hyde, W.T., Crowley, T.J., Kim, K.-Y., and North, G.R. (1989) A comparison of GCM and energy balance model simulations of seasonal temperature changes over the past 18,000 years. J. Clim., 2, 864–887.
  102. Hyde, W.T., Kim, K.Y., and Crowley, T.J. (1990) On the relation between polar continentality and climate: studies with a nonlinear seasonal energy balance model. J. Geophys. Res., 95, 18653–18668.
  103. Hyde, W.T. and Peltier, W.R. (1987) Sensitivity experiments with a model of the ice-age cycle - the response to Malankovitch forcing. J. Atmos. Sci., 44 (10), 1351–1374, doi: 10.1175/1520-0469(1987)0441351:SEWAMO2.0.CO;2.
  104. Imbrie, J. et al. (1992) On the structure and origin of major glaciation cycles 1. Linear responses to Milankovitch forcing. Paleoceanography, 7, 701–738.
  105. Ingersoll, A.P. (1969) The runaway greenhouse: a history of water on Venus. J. Atmos. Sci., 26, 1191–1198.
  106. Ingersoll, A.P. (2015) Planetary Climates, Princeton University Press, Princeton, NJ, p. 278.
  107. Intergovernmental Panel on Climate Change (IPCC) (2007, 2013) (accessed 9 March 2017).
  108. Irving, D. (2016) A minimum standard for publishing computational results in the weather and climate sciences. Bull. Amer. Meteorol. Soc., doi: O.I175/BAMS-D-15-00010.1.
  109. James, P.B. and North, G.R. (1982) The seasonal CO2 cycle on mars: an application of an energy balance climate model. J. Geophys. Res., 87, 10271–10283.
  110. Jackson, J.D. (1962) Classical Electrodynamics, John Wiley & Sons, NY, 641p.
  111. Kamke, E. (1959) Differentialgleichungen, Lösungenmethoden und Lösungen, vol. 1, 3rd edn, Chelsea Pull., Co., New York, 666p.
  112. Kasting, J.F. (1988) Runaway and moist greenhouse atmospheres and the evolution of earth and Venus. Icarus, 74, 472–494.
  113. Kasting, J.F. (2010) Faint young Sun redux. Nature, 464, 687–688.
  114. Kasting, J.F. (2014) How to Find a Habitable Planet, Princeton University Press, Princeton, NJ, 352p.
  115. Kasting, J.F., Pollack, J.B., and Ackerman, T.P. (1984) Response of earth's atmosphere to increases in solar flux and implications for loss of water from venus. Icarus, 57, 335–355.
  116. Kelly, J.J. (2006) Graduate Mathematical Physics, With MATHEMATICA Supplements, Wiley-VCH, 482p.
  117. Kim, K.-Y. and North, G.R. (1991) Surface temperature fluctuations in a stochastic model. J. Geophys. Res., 96, 18573–18580.
  118. Kim, K.-Y. and North, G.R. (1992) Seasonal cycle and second-moment statistics of a simple coupled climate system. J. Geophys. Res., 97, 20437–20448.
  119. Kim, K.-Y. and North, G.R. (1997) EOFs of harmonizable cyclostationary processes. J. Atmos. Sci., 54, 2416–2427.
  120. Kim, K.-Y., North, G.R., and Hegerl, G.C. (1996) Comparisons of the second-moment statistics of climate models. J. Clim., 9, 2204–2221.
  121. Kim, K.-Y., North, G.R., and Huang, J. (1992) On the transient response of a simple coupled climate system. J. Geophys. Res., 97, 10069–10081.
  122. Kirschivink, J.L. (1992) Late proterozoic low-latitude global glaciation: the snowball earth, in The Proterozoic Biosphere: A Multidisciplinary Study (eds J.W. Schopf and C. Klein), Cambridge University Press.
  123. Kleeman, R. (2011) Information theory and dynamical system predictability. Entropy, 13, 612–649, doi: 10.3390/e13030612.
  124. Kopp, G. (2017) Greg Kopp's TSI Page, koppg/TSI/ (accessed 3 March 2017).
  125. Kopp, G. and Lean, J.L. (2011) A new, lower value of total solar irradiance: evidence and climate significance. Geophys. Res. Lett., 38 (1), doi: 10.1029/2010GL045777.
  126. Körner, T.W. (1989) Fourier Analysis, Cambridge University Press, 591p.
  127. Kullback, S. (1968) Information Theory and Statistics, Dover Publications, Mineola, NY, 399p.
  128. Lebedeff, S.A. (1988) Analytic solution of the box diffusion model for a global ocean. J. Geophys. Res., 93 (D11), 14243–14255.
  129. Lee, W.-H. and North, G.R. (1995) Small icecap instability in the presence of fluctuations. Clim. Dyn., 11, 242–246.
  130. Leith, C.E. (1975) Climate response and fluctuation-dissipation. J. Atmos. Sci., 32, 2022–2026.
  131. Leung, L.-Y. and North, G.R. (1990) Information theory & climate prediction. J. Clim., 3, 5–14.
  132. Leung, L.-Y. and North, G.R. (1991) Atmospheric variability on a zonally symmetric land planet. J. Clim., 4, 753–765.
  133. Levitus, S. (1982) Climatological Atlas of the World Ocean, NOAA/ERL GFDL Professional Paper 13, Princeton, NJ, pp. 173 (NTIS PB83-184093).
  134. Lin, R.-Q. and North, G.R. (1990) A study of abrupt climate change in a simple non-linear climate model. Clim. Dyn., 4, 253–262.
  135. Lindzen, R.S. (1994) Climate dynamics and global change. Annu. Rev. Fluid Mech., 26, 353–378.
  136. Lindzen, R.S. and Giannitsis, C. (1998) On the climatic implications of volcanic cooling. J. Geophys. Res., 103, 5929–5941.
  137. Lindzen, R.S., Hou, A.Y., and Farrell, B.F. (1982) The role of convict model choice in calculating the climate impact of doubling . J. Atmos. Sci., 39, 1189–1205.
  138. Lindzen, R.S. and Farrell, B.F. (1977) Some realistic modification of simple climate models. J. Atmos. Sci., 34, 1487–1501.
  139. Liou, K.N. (1992) Radiation and Cloud Processes in the Atmosphere, Oxford University Press, New York, 487p.
  140. Liou, K.N. (2002) An Introduction to Atmospheric Radiation, 2nd edn, Academic Press, San Diego, CA, 583p.
  141. Lisiecki, L.W. and Raymo, N.E. (2005) A Pliocene-Pleistocene stack of 57 globally distributed benthic O records. Paleoceanography, 20 (1), doi: 10.1029/2004PA001071.
  142. Loeb, N.G. and Wielicki, B.A. (2014) Encyclopedia of the Atmospheric Sciences, vol. 4, 2nd edn (eds G.R. North, F. Zhang, and J.A. Pyle), Elsevier, New York, p. 67.
  143. Loeb, N.G., Wielicki, B.A., Doelling, D.R., Smith, G.L., Keyes, D.F., Kato, S., Manalo-Smith, N., and Wong, T. (2009) Toward optimal closure of the earth's top-of- atmosphere radiation budget. J. Clim., 22, 748–766.
  144. London, J. (1980) Radiative energy sources & sinks in the stratosphere and mesosphere, in Proceedings of the NATO Advanced Study Institute on Atmospheric Ozone: Its Variation and Human Influences: Aldeia das Acoteias, Abi2rve, Portugal, October 1-13, 1979 (ed. A.C. Aiken), Federal Aviation Administration, US Department of Transportation, Washington, DC, pp. 703–721.
  145. Lorenz, E. (1975) Climatic Predictability, GARP Publications Series, pp. 132–136, (accessed 3 March 2017).
  146. Lüthi, D., Le Floch, M., Bereiter, B., Blunier, T., Barnola, J.-M., Siegenthaler, U., Raynaud, D., Jouzel, J., Fischer, H., Kawamura, K., and Stocker, T.F. (2008) High-resolution carbon dioxide concentration record 650,00-800,000 years before present. Nature, 453, 379–382, doi: 10.1038/nature06949.
  147. Manabe, S., Stouffer, R.J., Spelman, M.J., and Bryan, K. (1991) Transient responses of a coupled ocean – atmosphere model to gradual changes of atmospheric . Part I: Annual mean response. J. Clim., 4, 785–818.
  148. Manabe, S. and Strickler, R.F. (1964) Thermal equilibrium of the atmosphere with a convective adjustment. J. Atmos. Sci., 21, 361–385.
  149. Manabe, S. and Wetherald, R.T. (1967) Thermal equilibrium of the atmosphere with a given distribution of relative humidity. J. Atmos. Sci., 24, 241–259.
  150. Manabe, S. and Wetherald, R.T. (1975) The effects of doubling the concentration on the climate of a general circulation model. J. Amos. Sci., 32, 3–15.
  151. Melezhik, V.A. (2006) Multiple causes of earth's earliest global glaciation. Terra Nova, 18, 130–137.
  152. Mengel, J.G., Short, D.A., and North, G.R. (1988) Seasonal snowline instability in an energy balance model. Clim. Dyn., 2, 127–131.
  153. Milankovitch, M. (1941) Canon of insolation and the ice age problem (in Serbian), K. Serb. Acad. Beogr. Spec. Publ., 132 (English translation, 482ppll, Israel Program for Scientific Translations, Jerusalem, 1969).
  154. Milankovitch, M. (1998) Canon of Insolation and the Ice-Age Problem, Belgrade.
  155. Montgomery, D.C., Peck, E.A., and Vining, G.G. (2001) Introduction to Linear Regression Analysis, John Wiley & Sons, Inc., New York, 641p.
  156. Morantine, M.C. and Watts, R.G. (1994) Time scales in energy balance climate models 2: the intermediate time solutions. J. Geophys. Res., 99, 3643–3653.
  157. Myhre, G., Highwood, E.J., Shine, K.P., and Stordal, F. (1998) New estimates of radiative forcing due to well mixed greenhouse gases. Geophys. Res. Lett., 25, 2715–2718.
  158. Nakajima, S., Hayashi, Y.-Y., and Abe, Y. (1992) A study on the “runaway greenhouse effect” with a one-dimensional radiative-convective equilibrium model. J. Atmos. Sci., 49, 2256–2266.
  159. NASA Goddard Institute for Space Studies (2017) January 2017 was Third-Warmest January on Record, (accessed 7 March 2017).
  160. Neelin, J.D. (2011) Climate Change and Climate Modeling, Cambridge University Press, Cambridge, 282p.
  161. North, G.R. (1975a) Analytical solution to a simple climate model with diffusive heat transport. J. Atmos. Sci., 32, 1301–1307.
  162. North, G.R. (1975b) Theory of energy-balance climate models. J. Atmos. Sci., 32, 2033–2043.
  163. North, G.R. (1984) The small ice cap instability in diffusive climate models. J. Atmos. Sci., 41, 3390–3395.
  164. North, G.R., Bell, R.E., and Hardin, J.W. (1993) Fluctuation dissipation in a general circulation model. Clim. Dyn., 8, 259–264.
  165. North, G.R. and Cahalan, R.F. (1981) Predictability in a solvable stochastic climate model. J. Atmos. Sci., 38, 504–513.
  166. North, G.R., Cahalan, R.F., and Coakley, J.A. Jr. (1981) Energy balance climate models. Rev. Geophys. Space Phys., 19, 91–121.
  167. North, G.R. and Coakley, J.A. (1979) Differences between seasonal and mean annual energy balance model calculations of climate and climate change. J. Atmos. Sci., 36, 1189–1204.
  168. North, G.R. and Crowley, T.J. (1985) Application of a seasonal climate model to Cenozoic glaciation. J. Geol. Soc. (London, U.K.), 142, 475–482.
  169. North, G.R., Howard, L., Pollard, D., and Wielicki, B. (1979) Variational formulation of the Budyko-Sellers models. J. Atmos. Sci., 36, 255–259.
  170. North, G.R. and Kim, K.-Y. (1995) Detection of forced climate signals. Part II: Simulation results. J. Clim., 8, 409–417.
  171. North, G.R., Kim, K.-Y., Shen, S.S.P., and Hardin, J.W. (1995) Detection of forced climate signals. Part I: Filter theory. J. Clim., 8, 401–408.
  172. North, G.R., Mengel, J.G., and Short, D.A. (1983) A simple energy balance model resolving the seasons and the continents: application to the Milankovitch theory of the ice ages. J. Geophys. Res., 88, 6576–6586.
  173. North, G.R. and Stevens, M.J. (1998) Detecting climate signals in the surface temperature field. J. Clim., 11, 563–577.
  174. North, G.R., Wang, J., and Genton, M. (2011) Correlation models for temperature fields. J. Clim., 24, 5850–5862.
  175. North, G.R. and Wu, Q. (2001) Detecting climate signals using space-time EOFs. J. Clim., 14, 1839–1862.
  176. North, G.R., Yip, K.-J.J., Chervin, R.M., and Leung, L.-Y. (1992a) Forced and free variations of the surface temperature field in a general circulation model. J. Clim., 5, 227–239.
  177. North, G.R., Yip, K.-J., Leung, L.-Y., and Chervin, R.M. (1992b) Forced and free variations of the surface temperature field in a general circulation model. J. Clim., 5, 227–239.
  178. NRC (2006) Surface Temperature Reconstructions for the Last 2,000 Years, National Academies Press, 145p.
  179. Nye, J.F. (1959) The motion of ice sheets and glaciers. J. Glacial., 3, 493–507.
  180. Obukhov, A.M. (1947) Statistically homogeneous fields on a sphere. Usp. Mat. Navk., 2, 196–198.
  181. Opik, E.J. (1965) Climatic changes in cosmic perspective. Icarus, 4, 289–307.
  182. Owen, T., Cess, R.D., and Ramanathan, V. (1979) Enhanced CO2 greenhouse to compensate for reduced solar luminosity on early Earth. Nature, 277, 640–642.
  183. Paillard, D. (2001) Glacial cycles: Toward a new paradigm. Rev. Geophys., 39, 325–346. doi: 10.1029/2000RG000091.
  184. Paltridge, G.W. (1975) Global dynamics and climate change – a system of minimum entropy exchange. Q. J. R. Meteorol. Soc., 101, 475–484.
  185. Paltridge, G.W. (1978) The steady-state format of global climate. Q. J. R. Meteorol. Soc., 104, 927–945.
  186. Papoulis, A. (1984) Probability, Random Variables, and Stochastic Processes, 2nd edn, McGraw-Hill, New York, 576p.
  187. Pedlosky, J. (2003) Waves in the Ocean and the Atmosphere, Introduction to Wave Dynamics, Springer-Verlag, Berlin, 260p.
  188. Percival, D.B. and Walden, A.T. (1993) Spectral Analysis for Physical Applications, Cambridge University Press, 583p.
  189. Petit, J.R. et al. (2001) Vostok Ice Core Data for 420,000 Years, IGBP PAGES/World Data Center for Paleoclimatology Data Contribution Series #2001-076, NOAA/NGDC Paleoclimatology Program, Boulder, CO.
  190. Petit, J.R., Jouzel, J., Raynaud, D., Barkov, N.I., Barnola, J.M., Basile, I., Bender, M., Chappellaz, J., Davis, J., Delaygue, G., Delmotte, M., Kotlyakov, V.M., Legrand, M., Lipenkov, V., Lorius, C., Pépin, L., Ritz, C., Saltzman, E., and Stievenard, M. (1999) Climate and atmospheric history of the past 420,000 years from the vostok ice core, Antarctica. Nature, 399, 429–436.
  191. Petty, G.W. (2006) A First Course in Atmospheric Radiation, Sundog Publishing, Madison, WI, 458p.
  192. Phillips, N.A. (1956) The general circulation of the atmosphere: a numerical experiment. Q. J. R. Meteorol. Soc., 82, 123–164.
  193. Picard, G.L. and Emery, W.J. (1990) Descriptive Physical Oceanography – An Introduction, Pergamon Press, Oxford, 320p.
  194. Pierrehumbert, R.T. (2011) Principles of Planetary Climate, Cambridge University Press, 680p.
  195. Pollard, D. (1982) A simple ice sheet model yields realistic 100 K glacial cycles. Nature, 296, 334–338.
  196. Pollack, H.N. and Huang, S.P. (2000) Climate reconstruction from subsurface temperatures. Annu. Rev Earth Planet. Sci., 28, 339–369.
  197. Prigogine, I. (1968) Introduction to Thermodynamics of Irreversible Processes, 3rd edn, Wiley-Interscience, New York, 147p.
  198. Pujol, T. and North, G.R. (2003) Analytical investigation of the atmospheric radiation limits in semigray atmospheres in radiative equilibrium. Tellus, 55A, 328–337.
  199. Ramanathan, V. and Coakley, J.A. Jr. (1978) Climate modeling through radiative-convective models. Rev. Geophys. Space Phys., 16, 465–489.
  200. Raymo, M.E. and Huybers, P. (2008) Unlocking the mysteries of the ice ages. Nature, 17, 284–285.
  201. Richtmyer, F.K., Kennard, E.H., and Lauritsen, T. (1955) Introduction to Modern Physics, 5th edn, McGraw-Hill Book Co., New York, 666p.
  202. Robinson, A., and H. Stommel (1959) The Oceanic Thermocline and the Associated Thermohaline Circulation, Tellus, 11, 295–308. doi: 10.1111/j.2153-3490.1959.tb00035.
  203. Roe, G. (2009) Feedbacks, timescales, and seeing Red. Annu. Rev. Earth Sci., 37, 93–115.
  204. Roe, G.H. and Baker, M. (2007) Why is climate sensitivity so unpredictable? Science, 318, 629–632.
  205. Roe, G.H., Feldl, N., Armour, K.C. et al. (2015) The remote impacts of climate feedbacks on regional climate predictability. Nat. Geosci., 8, 135–139.
  206. Rosing, M.T., Bird, D.K., Sleep, N.H., and Bjerrum, C.J. (2010) No climate paradox under the faint early sun. Nature, 464 (7289), 744–747.
  207. Roulston, M.S. and Smith, L.A. (2002) Evaluating probabilistic forecasts using information theory. Mon. Weather Rev., 130, 1653–1660.
  208. Ruddiman, W.F. and McIntyre, A. (1984) Ice-age thermal response and climatic role of the surface North Atlantic Ocean, 40 to 63°N. Geol. Soc. Am. Bull., 95, 381–396.
  209. Russell, G.L. and Rind, D. (1999) Response to CO2 transient increase in the GISS coupled model: regional coolings in a warming climate. J. Clim., 12, 531–539.
  210. Rygel, M.C., Fielding, C.R., Frank, T.D., and Birgenheier, L.P. (2008) The magnitude of late glacioeustatic fluctuations: a synthesis. J. Sediment. Res., 78, 500–511.
  211. Sagan, C. and Mullen, G. (1972) Earth and mars: evolution of atmospheres and surface temperatures. Science, 177, 52–56.
  212. Salmun, H., Cahalan, R.F., and North, G.R. (1980) Latitude-dependent sensitivity to stationary perturbations in simple climate models. J. Atmos. Sci., 37, 1874–1879.
  213. Saltzmann, B., Hansen, A.G., and Maasch, K.A. (1984) The late quaternary glaciers as the response of a three-component feedback system to earth orbital forcing. J. Atmos. Sci., 41, 3380–3389.
  214. Schlesinger, M.E. (1986) Equilibrium and transient climatic warming induced by increased atmospheric . Clim. Dyn., 1, 35–51.
  215. Schmittner, A., Urban, N.M., Shakun, J.D., Mahowald, N.M., Clark, P.U., Bartlein, P.J., Mix, A.C., and Rosell-Mele, A. (2011) Climate sensitivity estimated from temperature reconstructions of the last glacial maximum. Science, 334, 1385–1388.
  216. Schneider, S.H. and Dickinson, R.E. (1974) Climate modeling. Rev. Geophys. Space Phys., 12, 447–493.
  217. Schwarzschild, K. (1906) On the equilibrium of the sun's atmosphere. Nach. K. Gesell. Wiss. Götingen, Math.-Phys. Klasse, 195, 41–53.
  218. Sellers, W.D. (1969) A climate model based on the energy balance of the earth-atmosphere system. J. Appl. Meteorol., 8, 392–400.
  219. Shen, S.S.P. and North, G.R. (1999) A simple proof of the slope stability theorem for energy balance climate model. Can. Appl. Math. Q., 7, 201–215.
  220. Shen, S.S., North, G.R., and Kim, K.-Y. (1994) Spectral approach to optimal estimation of the global average temperature. J. Clim., 7, 1999–2007.
  221. Short, D.A. and Mengel, J.G. (1986) Tropical climatic phase lags and Earth's precession cycle. Nature, 323, 48–50. doi: 10.1038/323048a0.
  222. Short, D.A., Mengel, J.G., Crowley, T.J., Hyde, W.T., and North, G.R. (1991) Filtering of Milankovitch cycles by earth's geography. Quat. Res., 35, 157–173.
  223. Simpson, G.C. (1927a) Some studies in terrestrial erudition. Mem. R. Meteorol. Soc. II, 16, 69–95.
  224. Simpson, G.C. (1927b) Further studies in terrestrial erudition. Mem. R. Meteorol. Soc. III, 21, 69–95.
  225. Smoluchowski, M. (1906) Zur kinetischen Theorie der Brownschen Molekularbewegung und der Suspensionen. Ann. d. Phys. (Leipzig) 21, 756–780 (in German).
  226. Solomon, S. and Dahe, Q. (2007) Historical overview of climate change science (What is the greenhouse effect?), in Climate Change 2007: The Physical Science Basis, Working Group 1 Contribution to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Chapter 1 (eds S. Solomon and Q. Dahe), Cambridge University Press, Cambridge, pp. 115–116.
  227. Stevens, M.J. (1997) Optimal estimation of the surface temperature response to natural and anthropogenic climate forcings over the past century. PhD dissertation. Texas A&M University, 157p.
  228. Stevens, B. (2015) Good Scientific Practice, (accessed 9 March 2017).
  229. Stevens, M.J. and North, G.R. (1996) Detection of the climate response to the solar cycle. J. Atmos. Sci., 53, 2594–2608.
  230. Stewart, R. Introduction to Physical Oceanography, (accessed 9 March 2017).
  231. Stoer, J., Bulirsch, R., Gautschi, W. (Translator), and Witzgall, C. (Translator) (2002) Introduction to Numerical Analysis. Springer, 746p.
  232. Stone, P.H., & J.S. Risbey (1990) On the limitations of general circulation climate models. Geophys. Res. Lett., 17, 2173–2176.
  233. Summerhayes, C.P. (2015) Earth's Climate Evolution, Wiley-Blackwell, Singapore, 394p.
  234. Tarasov, L. and Peltier, W.R. (1997) Terminating the 100 kyr ice age cycle. J. Geophys. Res., 102 (D18), 21665–21693.
  235. Thiébaux, H.J. (1994) Statistical Data Analysis for Ocean and Atmospheric Sciences, Academic Press, 247p.
  236. Trenberth, K.E., and Caron, J.M. (2001) Estimates of meridional atmosphere and ocean heat transports. Bull. Amer. Meteorol. Soc., doi: 10.1175/1520-0442.
  237. Trenberth, K.E., Fasullo, J.T., and Kiehl, J. (2009) Earth's global energy budget. Bull. Am. Meteorol. Soc., 90, 311–323.
  238. van den Dool, H. (2007) Empirical Methods in Short-Term Climate Prediction, Oxford University Press, Oxford, 240p.
  239. Walter H. Munk, (1966) Abyssal recipes. Deep-Sea Research, 13, 707–730.
  240. Ward, P.D. and Brownlee, D. (2003) Rare Earth: Why Complex Life is Uncommon in the Universe, Copernicus, 338p.
  241. Ward, P.D. and Kirschivink, J. (2015) A New History of Life: The Radical New Discoveries about the Origins and Evolution of Life on Earth, Bloomsbury Press, New York, 400p.
  242. Warren, S.G., Brandt, R.E., Grenfell, T.C., and McKay, C.P. (2002) Snowball earth: ice thickness on the tropical ocean. J. Geophys. Res., 107 (C10), 3167, doi: 10:.1029/2001JC001123.
  243. Washington, W.M. and Parkinson, C.L. (2005) An Introduction to Three-Dimensional Climate Modeling, 2nd edn, University Science Books, Sausalito, CA, 353p.
  244. Watts, R.G., Morantine, M.C., and Rao, K.A. (1994) Timescales in energy balance climate models 1. The limiting case solutions. J. Geophys. Res., 99, 3631–3641.
  245. Weart, S.R. (2008) The Discovery of Global Warming: Revised and Expanded Edition (New Histories of Science, Technology), Revised edn, Harvard University Press, 240p.
  246. Weaver, C.P. and Ramanathan, V. (1995) Deductions from a simple climate model: factors governing surface temperature and atmospheric thermal structure. J. Geophys. Res., 100, 11585–11591.
  247. Wendisch, M. and Yang, P. (2012) Theory of Atmospheric Radiation, Wiley-VCH Verlag GmbH, Weinheim, 321p.
  248. Whittaker, E.T. and Watson, G.N. (1962) A Course of Modern Analysis, 4th edn, Cambridge University Press, Cambridge, 608p.
  249. Wills, A.P. (1958) Vector Analysis with an Introduction to Tensor Analysis, Dover Publications, New York, 285p.
  250. Wigley, T.M. and Schlesinger, M.E. (1985) Analytical solution for the effect of increasing CO2 on global mean temperature. Nature, 315, 649–652. doi: 10.1038/315649a0.
  251. Wu, W. and North, G.R. (2007) Thermal Decay Modes in Simple Climate Models. Tellus, 59, 618–626.
  252. Zachos, J.C., Pagani, M., Sloan, L.C., Thomas, E., and Billups, K. (2001) Trends, rhythms and aberrations in global climate 65 Ma to present. Science, 292, 686–693.
  253. Zhuang, K., North, G.R., and Giardino, J.R. (2014) Hysteresis of glaciations in the Permo-Carboniferous. J. Geophys. Res. Atmos., 119, 2147–2155, doi: 10.1002/2013JD020524.